Bewegen bij coronairlijden een evidence based approach

T. Pustjens

Table I Continued

Components

- For secondary prevention in very-high-risk patients (i.e. documented ASCVD, either clinical or unequivocal on imaging), an LDL-C reduction of >50% from baseline and an LDL-C goal of <1.4 mmoVL (<55 mg/dL) are recommended
- For patients with ASCVD who experience a second vascular event within 2two years (not necessarily of the same type as the first event) while taking
 maximally tolerated statin therapy, an LDL-C goal of <1.0 mmol/L (<40 mg/dL) may be considered
- No goal for triglycerides, but <1.7 mmol/L (<150 mg/dL) indicates lower risk and higher levels indicate a need to look for other risk factors
 Blood pressure management
- Assessment: BP frequently at rest. During exercise BP should be monitored when hypertension on effort is suspected. A SBP up to 200 mmHg at 100 W during exercise is advised as acceptable upper limit²⁵
- Intervention:
- Offer lifestyle intervention in high-normal BP and grade 1-2-3 hypertension
- Consider drug treatment in high normal BP, in very high risk patients with CVD
- Drug treatment in grade 1–2–3 hypertension

Expected outcomes:

- BP <140/ 90 mmHg in all patients (targeted to 130/80 mmHg or lower in most patients when treatment is well tolerated)
- SBP in the range 120–129 mmHg in most <65 years patients receiving BP-lowering drugs
- SBP targeted to a range of 130–139 mmHg in older patients (aged ≥65 years) receiving BP-lowering drugs, with close monitoring of adverse effects
- DBP target of <80 mmHg for all hypertensive patients, independent of the level of risk and comorbidities.

Smoking cessation

- All smokers should be professionally encouraged to permanently stop smoking all forms of tobacco. Follow-up, referral to special multidisciplinary
 programmes and/or pharmacotherapy (including nicotine replacement) are recommended, as a stepwise strategy for smoking cessation. Structured
 approaches are to be used, for example, 5As: Ask, Advise, Assess, Assist, Arrange
- Ask the patient about his/her smoking status and use of other tobacco products. Specify both amount of smoking (cigarettes per day) and duration
 of smoking (number of years)
- Determine readiness to change; if ready, choose a date for quitting
- Assess for PSRFs that may impede success
- Intervention: provide structured follow-up. Offer behavioural advice and group or individual counselling
- Offer nicotine replacement therapy and/or bupropion, varenicline
- Smokers who quit smoking during hospitalization should be strongly supported to stay smoke free using the above steps in smoking cessation
- Patients trying to quit smoking should be helped in maintaining weight during this period, since are more likely to put on between 3 and 5 kg in the first three months to a year
- Offer assistance to avoid passive smoking
- No role of e-cigarettes for smoking cessation (unclear evidence about whether e-cigarettes or other Electronic Nicotine Delivery Systems are useful and safe²⁶)

Expected outcome:

Long-term abstinence from smoking

Psychosocial management

- Assessment for PSRFs: low socio-economic status, lack of social support, stress at work and in family life, posttraumatic stress, hostility, social isola tion, cognitive impairment, depression, anxiety and other mental disorders.
- Adoption of a two-step evaluation of PSRFs in CR: first, to ask the patient single-item questions about distinct PSRFs and then to apply standardized
 questionnaires (i.e. the HeartQoL for quality of life in patients with CHD across European language groups; or HADS for anxiety/depression)
- Intervention:
- Provide multimodal behavioural interventions, integrating health education, physical exercise and psychological therapy, for PSRFs and coping with illness
- Referral to psychiatrist for psychotherapy, medication or collaborative care should be considered in the case of clinically symptoms of depression, anxiety or hostility
- Whenever possible, induce spouses and other family members, domestic partners, and/or significant others in such sessions (to be applied to other lifestyle measures also). Teach and support self-help strategies and ability to obtain effective social support.
- Integrate systematically psychosocial management with sexual counselling when appropriate
- When appropriate, provide vocational reintegration/return to work strategies of patients after an acute cardiac event Expected outcome:

Absence of clinically significant psychosocial problems and acquisition of stress management skills. Work resumption and/or resumption of meaningful daily activities

Table I Continued

Components

al

Evaluation of the programme results and establishment of structured follow-up

Expected outcome:

coronary intervention

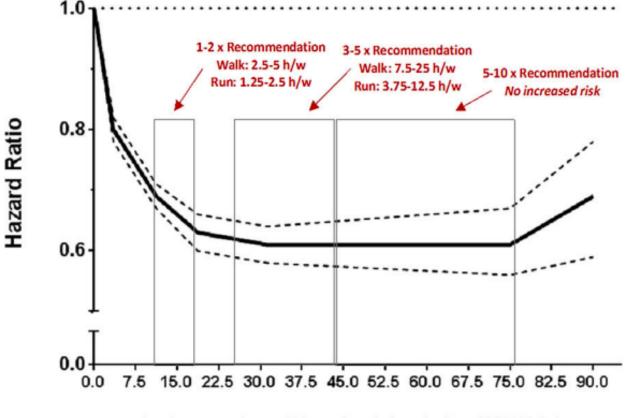
- Individual determination of success or failure for each area of intervention
- Establishment of new rehabilitative goals based on successful and unsuccessful areas of intervention
- Adequate transmission of information for continuing of care
- Quality assurance of intervention using systematic registration on individual level.
- Establishment of structured follow-up focused on rehabilitative goals and secondary prevention in the short and long term.

Table 2 Core components of cardiac rehabilitation post acute coronary syndrome and post primary percutaneous

Components	Established/agreed issues	Class (level)	Issues requiring further evidence
Patient	Clinical history: review clinical course of ACS and comorbidities	I (A)	
assessment	 Physical examination: inspect puncture site, search other vascular atherosclerot- ic localizations 		
	 Evaluation: clinical condition, medications, risk factors, psychological and social aspects, exercise capabilities 		
	 Peak exercise capacity evaluation before and after CR completion: symptom lim- ited exercise stress testing by bicycle ergometry or treadmill stress test (CPET recommended if available) 	1 (A)	Utility and feasibility of CPET in all CR patients
	 Assess myocardial ischaemia and viability by means of stress echo, CMR, SPECT, or PET, if not performed during acute hospital stay 	Ib (C)	
	 In patients with pre-discharge LVEF ≤40%, repeat echocardiography 6–12 weeks after MI, and after complete revascularization and optimal medical therapy, to as- sess the potential need for primary prevention ICD implantation and potential function accounts. Account is cited of with thering human interaction. 	I (C)	
Physical activity	function recovery. Assess the risk of arrhythmias by Holter-24 and exercise test If not otherwise specified according to individual clinical pattern, recommend	1 (A)	Safety of vigorous intensity
counselling	patients after the end of the CR programme to accumulate at least 30 min/day, 5 days/week of moderate intensity PA (i.e. 150 min/week) or 15 min/ day, 5 days/		and HIIT without supervision
	week of vigorous intensity PA (75 min/week), or a combination of both, per-		
	formed in sessions with a duration of at least 10 min. Shorter exercise sessions (i.e. <10 min) may also be appropriate, especially in very deconditioned individuals		
Exercise training	The programme should include supervised medically prescribed aerobic exercise	I (B)	 Modern definition of low
-	training:		and moderate-to-high ri
	 Low-risk patients: see Table 1. 		patients
	 Moderate to high-risk patients because of left ventricular dysfunction, coron- 		 Utility and best protoco
	ary disease severity, comorbidities, ageing: similar to low risk group but start- ing at 40% of the HRR		of aerobic HIIT
	 In case of asymptomatic ischemia consider 40–60% of heart rate reserve at the onset of ischaemia. Prophylactic nitroglycerine can be taken at the start of 		
	the training session in selected cases Resistance training to increase exercise capacity and muscle strength (see Toble 1)		
Lipid	After ACS if the LDL-C goal is not achieved after 4–6 weeks despite maximal toler-		
management	ated statin therapy and ezetimibe, addition of a PCSK9 inhibitor is recommended		

ACS: acute coronary syndrome: CMR: cardiac magnetic resonance; CPET: cardiopulmonary exercise testing: CR: cardiac rehabilitation; HIIT: high intensity interval training: HRR: heart rate reserve; ICD: implantable cardiac defibrillator; LDL-C: low-density lipoprotein cholesterol; LVEF: left ventricular ejection fraction; MI: myocardial infarction; PA: physical activity; PET: positron emission tomography; SPECT: single-photon emission computed tomography

Cardiac rehabilitation in coronary artery disease


- Exercise-based training
 - Moderate vs. high-intensity training
- Resistance training
 - Resistance training + aerobic exercise vs aerobic exercise
- ESC guideline recommendations
- Challenges in cardiac rehabilitation
- Cost-effectiveness

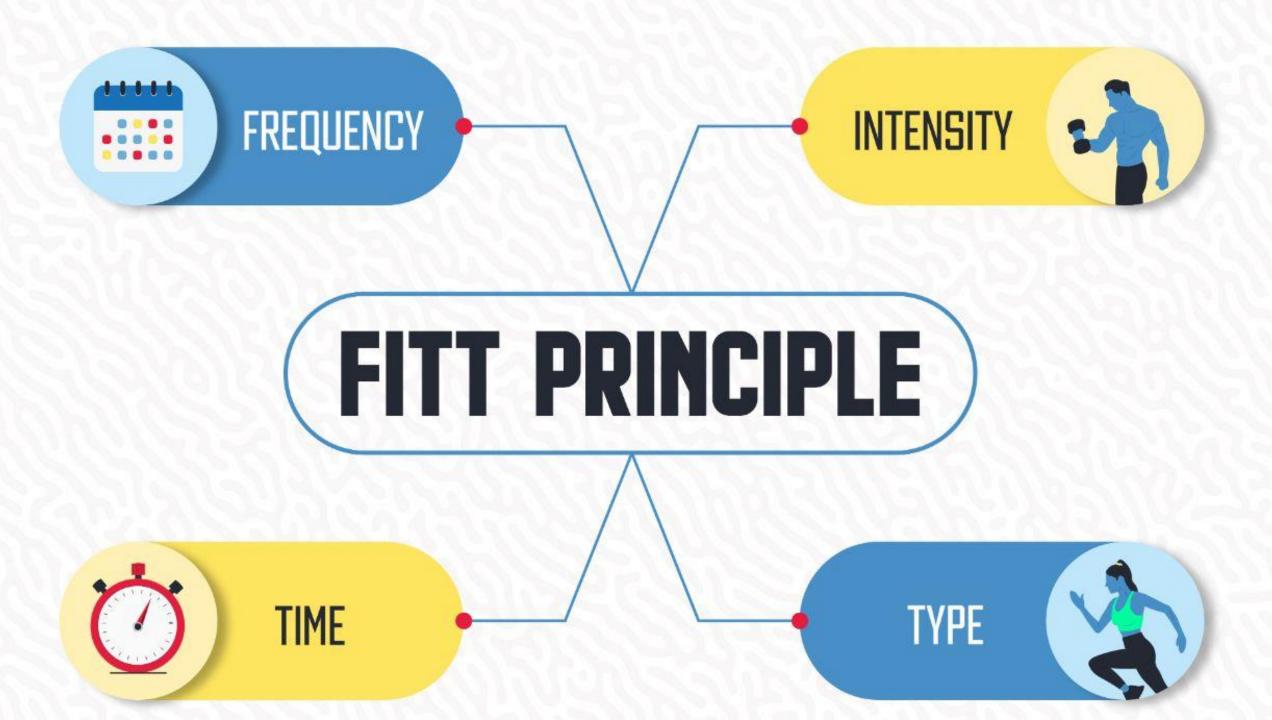
General physical activity

Leisure-time Physical Activity (MET-h/w

Conclusions

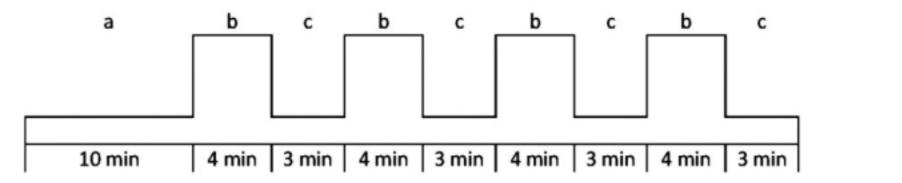
- Large reduction of all-cause mortality
- Modest amount of exercise is beneficial
- Large amount of exercise is not harmful

Arem. JAMA Intern Med. 2015 Kraus. Med Sci Sports Exerc. 2019

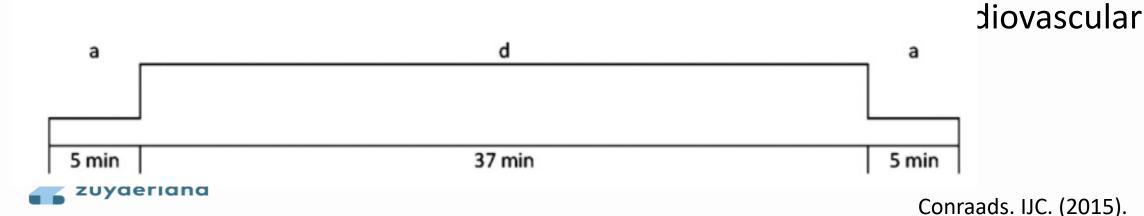

Gaesser. BMJ – Christmas special. 2022

Exercise-based cardiac rehabilitation

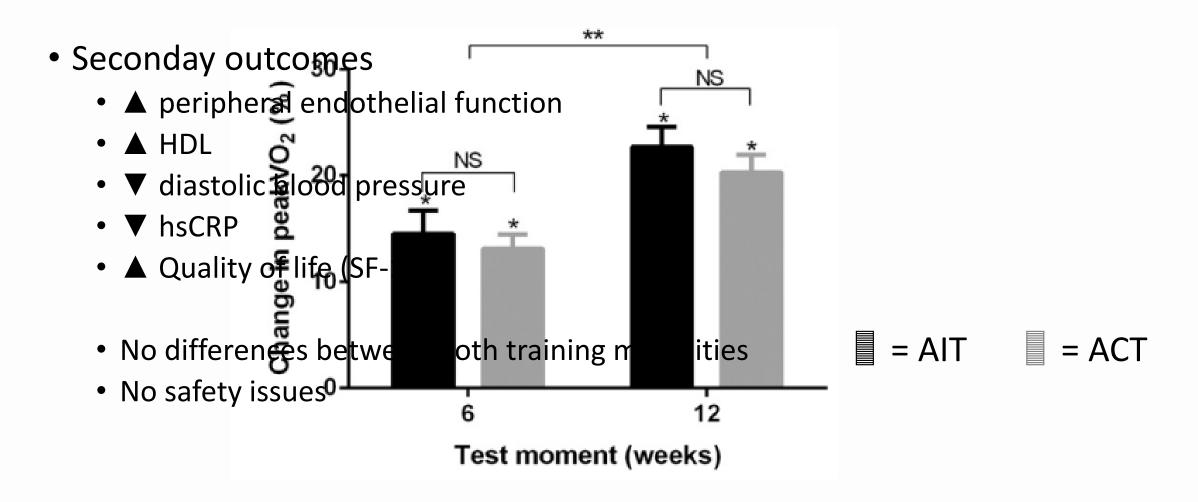
Exercise-based cardiac rehabilitation for coronary heart disease (Review)


Dibben G, Faulkner J, Oldridge N, Rees K, Thompson DR, Zwisler AD, Taylor RS

- Cochrane review (2021)
 - 85 RCTs of exercise based interventions compared with 'no exercise'
 - Almost 25,000 patients with coronary heart disease
- Short-term FUP (6-12months)
 - All-cause mortality RR 0.87 [0.73-1.04]
 - Myocardial infarction RR 0.72 [0.55-0.93]
 - All-cause hospitalization RR 0.58 [0.43-0.77]
 - No difference in cardiovascular mortality, and revascularization procedures
- Medium-term FUP (12-36months)
 - Cardiovascular mortality RR 0.77 [0.63-0.93]
- Long-term FUP (>36 months)
 - Cardiovascular mortality RR 0.58 [0.43-0.78]
 - Myocardial infarction RR 0.67 [0.50-0.90]
- Improvement in QoL


Moderate vs. high-intensity training (HIT)

A. AIT programme (38 min)



(ACT)

B. ACT programme (47 min)

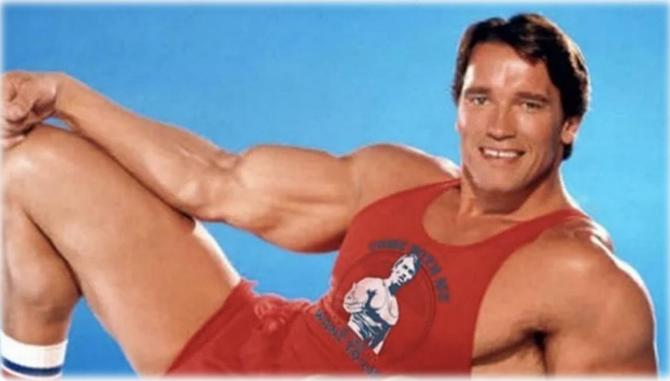
SAINTEX-CAD study

Conraads. IJC. (2015).

Moderate vs. high-intensity training (HIT)

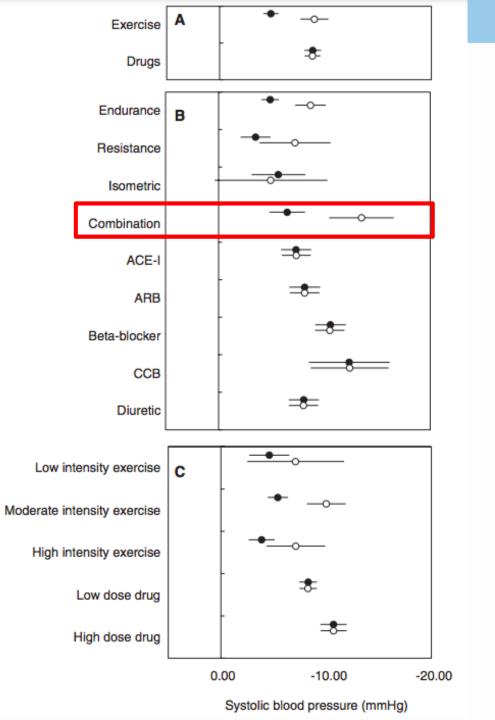
• HIT

Key in exercise-based CR is the total energy expenditure rather than The specific training characteristic


- More time-efficient
- Adherence after termination of CR?
- Clinical relevance?

Resistance training: does it matter?

- Low muscular strength is a risk factor for all-cause and cardiovascular death
- Resistance training is associated with lower mortality



(d) Hazard ratio Hazard ratio Study or subgroup log[Hazard ratio] SE Weight IV, random, 95% CI IV, random, 95% CI -0.5014 0.3864 Courneya 2014 0.61 [0.28, 1.29] 5.6% Kamada 2017 -0.462 0.1605 20.2% 0.63 [0.46, 0.86] Loprinzi 2015 -1.0498 0.3684 6.1% 0.35 [0.17, 0.72] Schoenborn 2011-A -0.6162 0.0601 0.54 [0.48, 0.61] 37.9% -0.3147 0.1001 Schoenborn 2011-B 30.2% 0.73 [0.60, 0.89] Total (95% CI) 100.0% 0.60 [0.49, 0.72] Heterogeneity: Tau² = 0.02; Chi² = 8.83, df = 4 (P = 0.07); I^2 = 55% 00 0.01 **U**. I τU Test for overall effect: Z = 5.26 (P < 0.00001) Resistance + aerobic No exercise Test for overall effect: z = 3.31 (r = 0.0009) Resistance No exercise

Resistance training: does it matter?

Naci. Br J Sports Med. 2019

Resistance training in coronary artery disease

- Resistance exercise; 2-3 times/week
 - Upper body: 8-10 repetitions of 30-70% of the 1 repetition maximum (1RM)
 - Lower body: 12-15 repetitions of 40-80% of 1RM

		Total		ontrol		d Moints	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
				50	100	a vveigne	IV, Random, 95% CI	IV, Random, 95% CI
ax (K	I+AI	vs A	1)					
21.85		50		2.34	5	70		
						200 0.0017001		
1204.4								
		17						
			1.000000					
					- 13D			-
	0.000					70		
1000003		1.5						
1.000	1000					T		Ť
						T.)		
20.66	4.06			3.92				
S 23		383			38	1 87.7%	1.36 [0.40, 2.31]	· · · · ·
(P = 0	005)							
22.06	2.17	40	20.54	2.38	4	0 8.6%	1.52 [0.52, 2.52]	
18.2	5	19	19	6	1	9 3.7%		
		59			5	9 12.3%		*
$f^{p} = 1.5$	55, df =	= 1 (P =	0.21);	I [#] = 36	%			2022
(P = 0	30)							
		442	li nan		44	0 100.0%	1.26 [0.41, 2.12]	◆
(P = 0.	.004)	0.91502		anna an		570		
9 1.	4	54 3	25.7 1	.6	52	36.1%	0.20 [-0.37, 0.77]	•
5	6	16 2	22.1	4	16	28.4%	0.40 [-3.13, 3.93]	
6	4 1	00 1	15.3 3	7 1	00	35.\$%	5.30 [4.23, 6.37]	-
	1	70		1	68	100.0%	2.07 [-1.96, 6.09]	
	(P = 0, 22.06 18.2 (P = 0, (P = 0, Chi* = 3 1. 5 5 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.9 3 10 23.1 6 1 4.93 3.6 37 15.87 3.73 3 26.5 5.9 17 25.1 6.6 2 26.72 5.21 20 23.54 3.86 1 30.9 3.6 8 23.9 5.9 26.2 1.6 53 25.7 1.6 5 26.5 4.8 10 19.6 5.5 1 17.3 4.3 16 16 3.6 1 23.4 1.3 19 23.4 1.2 1 23.2 1.6 2.3 1.2 18 23.4 1.2 1 25.32 2.55 22 25.71 1.65 2 2.3.7 4.1 35 21.5 3.8 3 20.66 4.06 4.6 16.89 3.92 4 383 38 38 38 22.06 2.17 40 20.54 2.38 4 18.2 5 19 19 6 1 14 18.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ry disease

5 patients)

g (AT) vs AT, and RT vs AT
f-Life

Fan. Front. Cardiovasc. Med. 2021

	Experimental			Control			5	Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
1 Physical score										
1.1 RT+AT vs AT										
C Hung 2004	6.3	0.6	9	5.8	1.1	9	4.7%	0.54 [-0.41, 1.48]		
H Dor-Haim 2018	50.55	4.36	14	36.98	7.48	15	4.8%	2.14 [1.20, 3.07]		
HM Arthur 2007	46.44	8.89	37	39.93	10.93	35	8.0%	0.65 [0.17, 1.12]		
LD Zhai 2018	71.95	11.98	20	73.16	12.77	19	6.8%	-0.10 [-0.72, 0.53]		
Q Liang 2020	91.94	12.63	40	83.35	11.24	40	8.2%	0.71 [0.26, 1.16]	· · · · ·	
RJ Wang 2013	12	2.3	36	8	2.1	36	7.4%	1.80 [1.24, 2.35]		
S Marzolini 2015	52.1	4.4	19	49	7.7	16	6.5%	0.49 [-0.18, 1.17]		
S Marzolini 2015(RT3+AT)	50.3	6.6	18	49	7.7	16	6.5%	0.18 [-0.50, 0.85]		
0 mai20inii 2013(((13.A))				70.00	14.85	46	8.5%	0.50 [0.09, 0.92]		
	80.22	16.52	46	12.20	14.00	40	0.0 /0			
XW Zheng 2019		16.52		77.69		13	5.7%	0.37 (-0.41, 1.14)		
XW Zheng 2019 Z Khalid 2019 Subtotal (95% CI) Heterogeneity: Tau ² = 0.26;	81.92 Chi ² = 34	11.99	13 252	77.69	10.33	13 245			•	
XW Zheng 2019 Z Khalid 2019 Subtotal (95% CI) Heterogeneity: Tau ² = 0.26; Test for overall effect: Z = 3.0 1.2 RT vs AT	81.92 Chi ² = 34	11.99	13 252	77.69	10.33	13 245	5.7%	0.37 [-0.41, 1.14] 0.71 [0.33, 1.08]	•	
XW Zheng 2019 Z Khalid 2019 Subtotal (95% CI) Heterogeneity: Tau ² = 0.26; Test for overall effect: Z = 3.0 1.2 RT vs AT S Ghroubi 2013 Y Du 2015 Subtotal (95% CI)	81.92 Chi ² = 34 66 (P = 0 75 70.47	11.99 4.70, df 0.0003) 18 16.69	13 252 = 9 (P < 16 100 116	77.69 0.0001 65 69.95	10.33); I² = 74 30 17.53	13 245 4% 16 190	5.7% 67.1% 6.3%	0.37 [-0.41, 1.14] 0.71 [0.33, 1.08]	•	
XW Zheng 2019 Z Khalid 2019 Subtotal (95% CI) Heterogeneity: Tau ² = 0.26; Test for overall effect: Z = 3.0 1.2 RT vs AT S Ghroubi 2013 Y Du 2016 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 1.3 1.3 RT vs UC HJ Jia 2018	81.92 Chi ² = 34 66 (P = 0 75 70.47 Chi ² = 0. 33 (P = 0 4.17	11.99 4.70, df 0.0003) 18 16.69 43, df = .18) 0.63	13 252 = 9 (P < 16 100 116 1 (P = 1 58	77.69 0.0001 65 69.95 0.51); I ² 3.68	10.33); I² = 74 30 17.53	13 245 4% 16 100 116	5.7% 67.1% 6.3% 9.5% 15.8%	0.37 [-0.41, 1.14] 0.71 [0.33, 1.08] 0.39 [-0.31, 1.09] 0.14 [0.14, 0.42] 0.18 [-0.08, 0.43] 0.79 [0.41, 1.17]		
XW Zheng 2019 Z Khalid 2019 Subtotal (95% CI) Heterogeneity: Tau ² = 0.26; Test for overall effect: Z = 3.0 1.2 RT vs AT S Ghroubi 2013 Y Du 2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 1.0 1.3 RT vs UC	81.92 Chi ² = 34 66 (P = 0 75 70.47 Chi ² = 0. 33 (P = 0	11.99 4.70, df 0.0003) 18 16.69 43, df = .18) 0.63	13 252 = 9 (P < 16 100 116 1 (P = 1 58	77.69 0.0001 65 60.05 0.51); I ²	10.33); I ² = 74 30 17.53 = 0%	13 245 4% 16 199 116	5.7% 67.1% 6.3% 9.5% 15.8%	0.37 [-0.41, 1.14] 0.71 [0.33, 1.08] 0.39 [-0.31, 1.09] 0.14 [0.14, 0.42] 0.18 [-0.08, 0.43]		

Summary

- Cardiac rehabilitation
 - ▼ Reduction in all-cause and cardiovascular mortality
 - ▼ Reduction in recurrent hospital admissions
 - ▲ Improves exercise capacity
 - ▲ Improves quality-of-life
- Exercise-based CR
 - Key is the total energy expenditure and not the type of exercise
- Resistance training
 - ▼ Reduces all-cause mortality
 - ▼ Reduces systolic blood pressure
 - ▲ Improvement of VO2 and QoL in CR

ESC guideline recommendations

Cardiac rehabilitation in coronary heart disease

Indications CR referral

- Acute coronary syndromes
- Undergoing reperfusion
- Chronic coronary syndromes

Key components of CR

- Screening cardiovascular risk factors
- Physical activity counselling
- Exercise training
- Diet/nutritional counselling
- Risk factor control
 - LDL < 1.4mmol/L
 - BMI 18.5-25kg/m2
 - Blood pressure < 140/90mmHg
- Patient education
- Psychosocial management

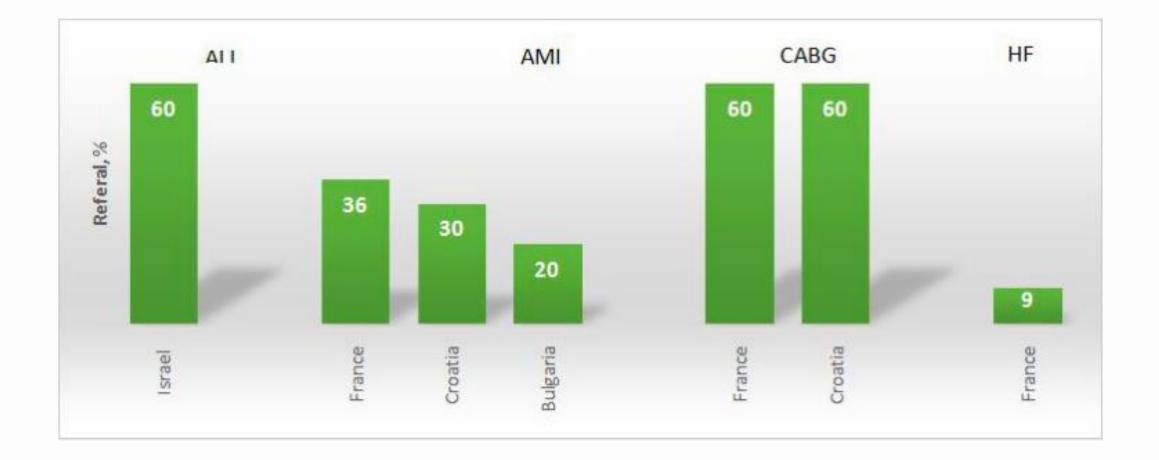
Physical activity

4.3.1. Physical activity and exercise

Recommendations for physical activity

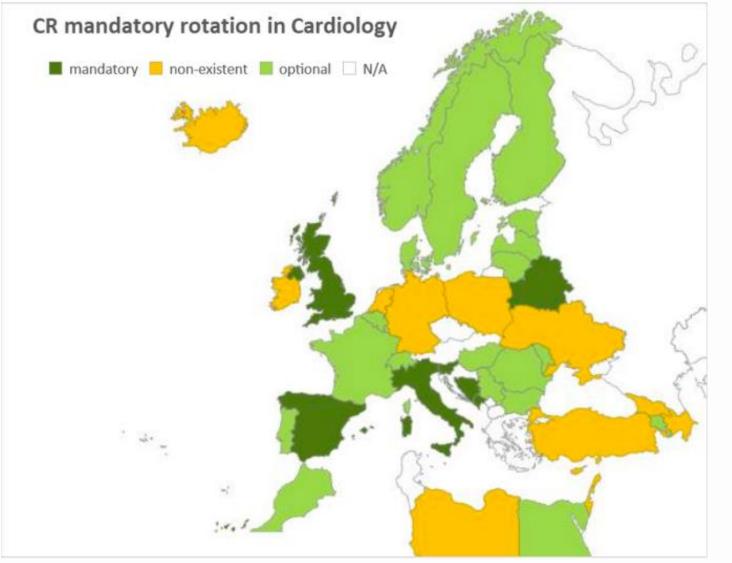
Recommendations	Class ^a	Level ^b
It is recommended for adults of all ages to strive for at least 150 - 300 min a week of moderate-		
intensity or 75 - 150 min a week of vigorous- intensity aerobic PA, or an equivalent combina- tion thereof, to reduce all-cause mortality, CV mortality, and morbidity. ^{371,372}	1	A
It is recommended that adults who cannot per- form 150 min of moderate-intensity PA a week should stay as active as their abilities and health condition allow. ^{373,374}	i.	в
It is recommended to reduce sedentary time to engage in at least light activity throughout the day to reduce all-cause and CV mortality and morbidity. ³⁷⁵⁻³⁷⁷	I.	в
Performing resistance exercise, in addition to aerobic activity, is recommended on 2 or more days per week to reduce all-cause mortality. ^{378,379}	I	в

Visseren Eur Heart J (2021).


Cardiac rehabilitation

Recommendations for cardiac rehabilitation

Recommendations	Class ^a	Level ^b
Participation in a medically supervised, struc- tured, comprehensive, multidisciplinary EBCR and prevention programme for patients after ASCVD events and/or revascularization, and for	I.	A
patients with HF (mainly HFrEF), is recom- mended to improve patient outcomes. ^{638–642}		
Methods to increase CR and prevention referral		
and uptake should be considered (i.e. electronic	lla	
prompts or automatic referrals, referral and liai-		в
son visits, structured follow-up by nurses or		
health professionals, and early programme initia- tion after discharge). ^{643–646}		
Home-based CR, telehealth, and mHealth inter-		
ventions may be considered to increase patient	ПР	в
participation and long-term adherence to		
healthy behaviours. ^{647,648}		



Challenges in cardiac rehabilitation

OCRE 2.0. ESCardio.org

8 countries: mandatory 13 countries: non-existent 21 countries: optional

Remote cardiac rehabilitation programme

Rehab+ programme

- Prospective, observational, control-matched trial
- Study sample 900 ACS patients
- 1:2 mobile telemonitoring vs regular programme
- Primary endpoint: QoL at 1 year measured by the SF-36 questionnaire
- Actual inclusions: >200

Cost-effectiveness

Economic analysis of treatments reducing coronary heart disease mortality in England and Wales, 2000–2010

D. FIDAN^{1*}, B. UNAL^{1,2}, J. CRITCHLEY³ and S. CAPEWELL¹

Costs per life-year gained (LYG)	
Aspirin and beta-blockers (secondary prev)	<£1000
ACE-inhibitor	£3398
Statins (primary prev)	£14557
Statins (secondary prev)	£4246
Primary angioplasty for myocardial infarction	£6054
Angioplasty (elective)	£3845
CABG	£3239
Cardiac rehabilitation	£1957

Fidan. Q J Med. 2007

Cost-effectiveness of CR

- 2018 systematic review including 19 economic studies regarding CR
- Cost conversion to 2016 US Dollar
- General CR vs no CR
 - Positive net cost, but all showed an increase in health
 - Incremental cost-effectiveness ratio range from USD 1065 71755 per QALY
 - Exercise-based CR vs no CR was most cost-effective;
 - USD 1065 per QALY,
 - USD 2555-3367 per LYG

M.D.

DISPENSE AS WRITTEN

Literature

